Mass Spectral Fragmentation Pattern of 3-Methyl- and 3-Phenyl-4-(N-methylarylhydrazono)isoxazol-5-ones

Neil G. Keats, Shyam K. Singh and Lindsay A. Summers*

Department of Chemistry, The University of Newcastle, 2308, New South Wales, Australia Received December 11, 1985

3-Methyl-4-(N-methylarylhydrazono)isoxazol-5-ones and 3-phenyl-4-(N-methylarylhydrazono)isoxazol-5-ones undergo considerable fragmentation on electron impact involving rupture of the isoxazolone ring and bonds in the N-methylarylhydrazono side chain.

J. Heterocyclic Chem., 23, 1119 (1986).

It was recently reported [1] that methylation of 3-methyl-4-arylhydrazonoisoxazol-5-ones (I) with methyl iodide gave a mixture of 2,3-dimethyl-4-arylazoisoxazol-5-ones (II) and 3-methyl-4-(N-methylarylhydrazono)isoxazol-5-ones (IV) likewise afforded 2-methyl-3-phenyl-4-arylazoisoxazol-5-ones (V) and 3-phenyl-4-(N-methylarylhydrazono)isoxazol-5-ones (VI). We have already discussed the mass spectral fragmentation pattern [2] of 2,3-dimethyl- and 2-methyl-3-phenyl-4-arylazoisoxazol-5-ones and have summarized other work on the mass spectra of isoxazol-5-ones. This paper is concerned with the mass spectral fragmentation patterns of some 3-methyl-4-(N-methylarylhydrazono)isoxazol-5-ones

$$CH_{3} - C - C = N - NH - R$$

$$I$$

$$CH_{3} - C - C - N - N - R$$

$$CH_{3} - C - C - N - N - R$$

$$CH_{3} - C - C - N - N - R$$

$$III$$

$$CH_{3} - C - C - N - N - R$$

$$III$$

$$C_{6}H_{3} - C - C - N - N - R$$

$$CH_{3} - C - C - N - N - R$$

$$CH_{3} - C - C - N - N - R$$

$$CH_{3} - C - C - N - N - R$$

$$CH_{3} - C - C - N - N - R$$

$$CH_{3} - C - C - N - N - R$$

$$CH_{3} - C - C - C - N - N - R$$

$$CH_{3} - C - C - C - N - N - R$$

VΙ

and 3-phenyl-4-(N-methylarylhydrazono)isoxazol-5-ones.

The electron impact mass spectra of seven 3-methyl-4-(N-methylarylhydrazono)isoxazol-5-ones, namely 3-methyl-4-(N-methylphenylhydrazono)isoxazol-5-one (III, R = H), 3-methyl-4-(N-methyl-o-methylphenylhydrazono)isoxazol-5-one (III, $R = 2-CH_3$), 3-methyl-4-(N-methyl-m-methylphenylhydrazono)isoxazol-5-one (III, R = 3-CH₃), 3-methyl-4-(N-methyl-p-methylphenylhydrazono)isoxazol-5-one (III, R = 4-CH₃), 3-methyl-4-(N-methyl-o-chlorophenylhydrazono)isoxazol-5-one (III, R = 2-Cl), 3-methyl-4-(Nmethyl-m-chlorophenylhydrazono)isoxazol-5-one (III, R = 3-Cl) and 3-methyl-4-(N-methyl-p-chlorophenylhydrazono)isoxazol-5-one (III, R = 4-Cl) and three 3-phenyl-4-(Nmethylarylhydrazono)isoxazol-5-ones, namely 3-phenyl-4-(N-methylphenylhydrazono)isoxazol-5-one (VI, R = H), 3-phenyl-4-(N-methyl-p-methylphenylhydrazono)isoxazol-5-one (VI, R = CH₃) and 3-phenyl-4-(N-methyl-p-chlorophenylhydrazono)isoxazol-5-one (VI, R = Cl) were examined. Details of the principal peaks in the spectra are given in Tables 1 and 2 and the spectra of the parent compounds of the two series, 3-methyl-4-(N-methylphenylhydrazono)isoxazol-5-one (III, R = H) and 3-phenyl-4-(Nmethylphenylhydrazono)isoxazol-5-one (VI, R = H) are given in Figures 1 and 2 respectively by way of illustration. The synthesis of the ten compounds has been reported [1].

The mass spectra of the seven 3-methyl-4-(N-methylarylhydrazono)isoxazol-5-ones are interesting (Table 1). With the parent compound 3-methyl-4-(N-methylphenylhydrazono)isoxazol-5-one (III, R=H) the base peak is due to the $C_6H_5^+$ ion at mass 77. The molecular ion $C_{11}H_{11}N_3O_2^{++}$ at mass 217 gives a peak amounting to 29% of the intensity of the base peak. Fragmentation of the molecular ion proceeds along a number of routes involving either rupture of the isoxazolone ring or rupture of bonds in the N-methylphenylhydrazono side chain. Rupture of the isox

azolone ring with loss of CO_2 and N affords a $C_{10}H_{11}N_2^+$ ion of mass 159 (13%) as depicted in Scheme 1, while loss of CH_3CN and CO_2 affords a $C_8H_8N_2^{++}$ species of mass 132 (11%) depicted as a benzopyrazole derivative (Scheme 2). This latter ion can lose H^+ to afford a $C_8H_7N_2^+$ ion of mass 131 (8%) and lose CH_3^+ to afford a $C_7H_8N_2^+$ ion at mass 117 (9%) (Scheme 2). Rupture of the N-N bond of the N-methylphenylhydrazono side chain affords a $C_7H_8N^+$ ion of mass 106 (56%) depicted as a benzaziridine derivative (Scheme 3). This ion may lose H^+ to afford a $C_7H_7N^{++}$

Figure 1. Mass spectrum of 3-methyl-4-(N-methylphenylhydrazono)isoxazol-5-one (III, R = H).

Figure 2. Mass spectrum of 3-phenyl-4-(N-methylphenylhydrazono)isoxazol-5-one (VI, R = H).

species which gives an intense peak at mass 105 (99%). Further loss of H accounts for the peak at mass 104 (29%), and loss of CH₃ gives the peak at mass 91 (48%) due to a C₆H₅N⁺ species (Scheme 3). The only other peak

$$C_{e}H_{5}$$
 C C N N N CO CH_{3} CH_{3} $CI_{6}H_{13}N_{3}O_{2}$ $CI_{6}H_{13}N_{3}O_{2}$ $CI_{6}H_{5}$ C C C N N $CI_{6}H_{13}N_{2}$ $CI_{15}H_{13}N_{2}$ $CI_{15}H_{13}N_{2}$

in the spectrum which deserves comment is the one due to the $C_6H_6^{+}$ species at mass 78 (22%). This must arise by a hydrogen migration to the $C_6H_5^{+}$ ion at mass 77 which is the base peak in the spectrum.

The spectra of the three 3-methyl-4-(N-methylmethylphenylhydrazono)isoxazol-5-ones (III, $R=2\text{-}CH_3$), (III, $R=3\text{-}CH_3$) and (III, $R=4\text{-}CH_3$) can be explained in a similar way by fragmentation routes analogous to those in Schemes 1-3. The base peaks in the case of compound (III, $R=2\text{-}CH_3$) and compound (III, $R=3\text{-}CH_3$) are at mass 91 due to the respective tolyl ($C_7H_7^+$) ions. With compound (III, $R=4\text{-}CH_3$) the tolyl ion amounts to 96% of the base

peak which is due to the $C_8H_{10}N^+$ ion at mass 120 (cf. Scheme 3). Peaks due to $C_8H_{10}N^+$ ions are also prominent in the spectra of compound (III, $R=2\text{-}CH_3$) (77%) and compound (III, $R=3\text{-}CH_3$) (85%). As in the spectrum of the parent member of the series, compound (III, R=H), hydrogen migrations are invoked to explain some of the

Scheme

peaks, notably those due to $C_8H_{11}N^{+}$ species at mass 121 and $C_7H_8N^+$ ions at mass 106.

The spectra of the three 3-methyl-4-(N-methylchloro-

phenylhydrazono)isoxazol-5-ones (III, R=2-Cl), (III, R=3-Cl) and (III, R=4-Cl) are also readily explained along similar lines. The base peak in all three cases is due to a $C_7H_6ClN^*$ species at mass 139 (cf. Scheme 3). It is interesting to note that rupture of the isoxazolone ring and the N-methylarylhydrazono side chain frequently occurs before loss of chlorine.

The spectra of the three 3-phenyl-4-(N-methylarylhydrazono)isoxazol-5-ones (VI, R = H), (VI, $R = CH_3$) and (VI, R = Cl) are explained by fragmentation patterns similar to those in the 3-methyl-4-(N-methylarylhydrazono)isoxazol-5-one series (Table 2) although there are some interesting differences. With the parent member of the series compound (VI, R = H) the molecular ion $C_{16}H_{13}N_3O_2^{++}$ gives a peak at mass 279 of 14% of the in-

Table 1

Empirical Formula of Fragment Ions [a] in the Mass Spectra of 3-Methyl-4-(N-methylarylhydrazono)isoxazol-5-ones III

m/e	Formula	R = H	$R = 2\text{-}CH_3$	$R = 3-CH_3$	Intensity (%) R = 4-CH ₃	R = 2-Cl	R = 3-Cl	R = 4-Cl
253	$C_{11}H_{10}^{37}ClN_3O_2$	-		•		-	6	12
251	$C_{11}H_{10}^{35}ClN_3O_2$	-	-	-	-	11	19	36
231	$C_{12}H_{13}N_3O_2$		26	28	45	-	-	•
217	$C_{11}H_{11}N_3O_2$	29		-		-	-	-
195	$C_{10}H_{10}^{37}ClN_2$	•	-			6	-	
193	$C_{10}H_{10}^{35}ClN_2$				-	21	12	13
173	$C_{11}H_{13}N_2$	-	8	5	9	-		-
166	C ₈ H ₇ ³⁵ ClN ₂			•			-	16
165	$C_8H_6^{35}ClN_2$	-	•	-		-		6
159	$C_{10}H_{11}N_2$	11		•		-		
153	$C_7H_4^{37}ClN_2$			-	-		-	12
152	$C_7H_5^{35}ClN_2$		-	_	_		-	7
151	$C_7H_4^{35}CIN_2$	_			_		_	43
146	$C_9H_{10}N_2$		5	14	12		-	-
145	$C_9H_9N_2$	_	6	7	20	-	-	•
142	$C_7H_7^{37}CIN$	_			-	17	12	27
141	$C_7H_6^{37}CIN$	_		_	-	37	37	46
140	$C_7H_7^{35}CIN$	-	-	_		60	43	85
139	$C_7H_6^{35}CIN$	<u>-</u>	-		-	100	100	100
138	C ₇ H ₅ ³⁵ ClN			-	-	21	17	26
132	$C_8H_8N_2$	11	-	-			-	
131	$C_8H_7N_2$	8	9	5	13	23	23	6
127				-	•	-	7	10
127	C ₆ H ₄ ³⁷ ClN		-				26	27
	C_6H_4 ³⁵ CIN $C_8H_{11}N$	-	13	41	- 29	•	-	-
121		-	13 77	85	100	•	-	-
120	C ₈ H ₁₀ N		67	67	82	-	-	-
119	C ₈ H ₉ N	•	96	27	23	-	•	-
118	C ₈ H ₈ N	-	8	-	- 23	•	-	•
117	C ₈ H ₇ N	-		-	•	-	-	•
114	C ₇ H ₅ N ₂	9	•	-	•	•		•
114	C ₆ H ₅ ³⁷ Cl	•	-	•	•		5	-
113	C ₆ H ₄ ³⁷ Cl	-	-	-	-	8	16	20
112	C ₆ H ₅ ³⁵ Cl	-	•	•	-		17	-
111	C ₆ H ₄ ³⁵ Cl		•		-	21	47	53
106	C ₇ H ₈ N	56	11	12	8	-		
105	C,H,N	99	16	41	30	8	15	21
104	C ₇ H ₆ N	29	15	14	14	6	15	12
101	C ₅ H ₄ ³⁷ Cl	•	-	-	•	5		6
99	C ₅ H ₄ 35Cl	-		-	-	17	11	18
92	C ₇ H ₈	-	15	19	19	-	•	•
91	C ₇ H ₇	•	100	100	96	-	•	-
	C ₆ H ₅ N	48	•	-	-			-
90	C ₆ H ₄ N	•			•	11	23	13
89	C ₇ H ₅	-	6	7	-	•	-	=
78	C ₆ H ₆	22	24	19	15			•
77	C ₆ H ₅	100	30	27	26	96	40	43
76	C ₆ H ₄	-	•	-	-		7	7
75	C ₆ H ₃	-	-	-	-	22	32	36
73	C ₃ H ₂ ³⁵ Cl	-	•	-	•	9	7	10
67	$C_3H_3N_2$		-		•	9	8	7
65	C _s H _s	15	47	36	32	· 	•	-
63	C ₅ H ₃	9	11	11	8	15	22	17

[a] Only those ions of mass >60 and of intensity ≥5% of the base peak are recorded. Peaks due to ¹³C species are omitted from the table.

tensity of the base peak which is due to the $C_6H_5^+$ ion at mass 77. Fragmentation of the molecular ion proceeds as in the 3-methyl series either by rupture of the isoxazolone ring or by rupture of bonds in the N-methylphenylhydra-

zono side chain. Rupture of the isoxazolone ring with loss of CO₂ and N affords a C₁₅H₁₃N₂⁺ ion of mass 221 (5%) as shown in Scheme 4, while loss of C₆H₅CN and CO₂ affords a C₈H₈N₂⁺ species of mass 132 (10%) depicted as before

Table 2

Empirical Formula of Fragment Ions [a] in the Mass Spectra of 3-Phenyl-4-(N-methylarylhydrazono)isoxazol-5-ones VI

		,	T . '. (0/)				
			Intensity (%				
m/e	Formula	R = H	$R = CH_3$	R = Cl			
215	C16H1237ClN3O2			7			
315	$C_{16}H_{12}^{-12}CIN_3O_2$ $C_{16}H_{12}^{-35}CIN_3O_2$	•	-	22			
313	$C_{17}H_{15}N_3O_2$	-	46				
293		14	40	-			
279	$C_{16}H_{13}N_3O_2$	14		•			
235	C ₁₆ H ₁₅ N ₂	-	6	-			
221	C ₁₅ H ₁₃ N ₂	5	-				
166	C ₆ H ₇ 35ClN ₂	•	-	16			
153	C ₇ H ₄ ³⁷ ClN ₂	•	•	8			
151	C ₇ H ₄ 35ClN ₂	•	-	22			
146	C ₉ H ₁₀ N ₂	-	15	-			
145	C ₉ H ₉ N ₂	•	21	•			
143	C ₉ H ₇ N ₂	•	5	•			
	C ₇ H ₈ ³⁷ ClN	•	-	10			
142	C ₇ H ₇ ³⁷ ClN	-	-	25			
141	C ₇ H ₈ 35ClN	-	-	45			
140	C ₇ H ₇ 35CIN	-	-	72			
139	C7H635CIN	-	-	54			
138	C7H535CIN	-	•	15			
132	$C_8H_8N_2$	10	-	•			
131	$C_8H_7N_2$	7	14	•			
129	C ₈ H ₅ N ₂	•	6				
127	C ₆ H ₄ 37ClN	-	-	5			
125	C ₆ H ₄ 35ClN	-	-	19			
121	C ₈ H ₁₁ N	•	14	•			
120	C ₈ H ₁₀ N		100				
118	C ₈ H ₈ N	_	20				
117	C ₈ H ₇ N	-	5				
	C ₇ H ₅ N ₂	7					
116	C ₈ H ₆ N		5				
113	C ₆ H ₄ ³⁷ Cl	_		11			
111	C ₆ H ₄ ³⁵ Cl	-	_	32			
106	C ₇ H ₈ N	53	7				
105	C ₇ H ₂ N	78	44	12			
103	C ₇ H ₆ N	22	17	16			
	C ₇ H ₅ N	46	42	100			
103				6			
101	C ₅ H ₄ ³⁷ Cl	•	•				
99	C₅H₄³⁵Cl	-		15			
92	C,H,	-	22	•			
91	C ₆ H ₅ N	44		•			
	C,H,	•_	88	•			
90	C ₆ H ₄ N	5		6			
	C7H6	-	5	-			
89	C ₇ H ₅	•	6	•			
78	C ₆ H ₆	21	16	•			
77	C ₆ H ₅	100	37	49			
76	C ₆ H₄	20	13	33			
75	C ₆ H ₃	6	7	29			
74	C ₆ H ₂	•	•	7			
73	C ₃ H ₂ 35Cl	•	-	6			
65	C_5H_5	18	41	-			
64	C ₅ H ₄	6	•	•			
63	C ₅ H ₃	10	12	13			

[[]a] Only those ions of mass >60 and of intensity ≥5% of the base peak are recorded. Peaks due to ¹³C species are omitted from the table.

as a benzopyrazole derivative (Scheme 5). This species can lose H to afford a C₈H₇N₂ ion of mass 131 (7%) and lose CH₃ to afford a C₇H₅N₂ ion at mass 117 (7%). The benzonitrile molecular ion C₇H₅N⁺ at mass 103 (46%) gives rise to a prominent peak in the spectrum (Scheme 6). The corresponding fragmentation to afford the acetonitrile molecular ion C₂H₃N⁺ at mass 41 was not noticed in the spectrum of 3-methyl-4-(N-methylphenylhydrazono)isoxazol-5-one (III, R = H) possibly due to the low mass of the acetonitrile molecular ion. Rupture of the N-N bond of the N-methylphenylhydrazono side chain of 3-phenyl-4-(N-methylphenylhydrazono)isoxazol-5-one (VI, R = H) affords a C₇H₈N⁺ ion at mass 106 (53%) depicted as a benzaziridine derivative (Scheme 7). This ion may lose H to afford a C₇H₇N⁺ species at mass 105 (78%). Further loss of H accounts for the peak at mass 104 (22%) and loss of CH₃ gives the peak at mass 91 (44%) due to a C₆H₅N⁺ species (Scheme 7). The C₆H₅N⁺ species may lose H to give a C₆H₄N⁺ ion at mass 90 (5%). The only other peak in the spectrum which deserves comment is the one due to the C₆H₆⁺ species at mass 78 (21%). This species must arise, as in the 3-methyl series, by a hydrogen migration.

The spectrum of 3-phenyl-4-(N-methyl-p-methylphenylhydrazono)isoxazol-5-one (VI, R = CH₃) can be explained by fragmentation routes analogous to those shown in Schemes 4-7. The base peak is at mass 120 due to a $C_8H_{10}N^+$ ion analogous to the $C_7H_8N^+$ ion shown in Scheme 7. The benzonitrile molecular ion $C_7H_5N^+$ at mass 103 in this case results in a peak of 42% of the intensity of the base peak. The p-tolyl ion, $C_7H_7^+$ at mass 91 gives rise to a prominent peak in the spectrum (88%).

The spectrum of 3-phenyl-4-(N-methyl-p-chlorophenyl-hydrazono)isoxazol-5-one (VI, R = Cl) can be explained in a similar way. In this case the base peak is at mass 103 due to the benzonitrile molecular ion $C_7H_5N^{+-}$ (cf. Scheme 6). As before it is interesting to note that rupture of the isoxazolone ring and the N-methylarylhydrazono side chain frequently occurs before loss of chlorine and hydrogen migrations have sometimes to be invoked to explain a few of the peaks.

EXPERIMENTAL

The spectra were determined with an A. E. I. MS-30 mass spectrometer. The samples were analysed by a direct insertion probe at an ionizing current of 70 eV. The ion source temperature was 200°.

The 3-methyl- and 3-phenyl-4-(N-methylarylhydrazono)isoxazol-5-ones were analytically pure [1].

REFERENCES AND NOTES

^[1] S. K. Singh and L. A. Summers, J. Heterocyclic Chem., 22, 457 (1985).

^[2] N. G. Keats, S. K. Singh and L. A. Summers, J. Heterocyclic Chem., 22, 1531 (1985).